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UNLIMITED SIMULTANEOUS DISCRIMINATION INTERVAI_ IN REGRESSION

by

G. J. Lieberman, R. G. Miller, Jr., and M. A. Hamilton

I. Introduction

In a recent paper [2] Lieberman and Miller considered the problem

of obtaining simultaneous tolerance intervals in regression. Such inter-

vals are easily described for the simple linear regression model E(Y) =

+ _x. Tolerance intervals [Lx(P), Ux(P ) ] were found which are based

upon the same estimated linear regression and which have the property

that with confidence I_ the interval [Lx(P), Ux(P)] contains 100P

percent of the normal distribution centered at _ + Ox for any x and

_any P. In terms of predictions, a future value of Y at level x of

the independent variable will lie in [Lx(P), Ux(P)] with probability

at least P with confidence i_ for any x and any P. The proper

interpretation of this probability statement is that the "confidence

i_" refers to the sample from which the regression line is estimated

and the "probability at least P" to the sampling distribution of future

observations. If for a single regression line one asserts that the pro-

portion of future observations falling within the given tolerance limits

(for any x) is at least P, and similar statements are made repeatedly

for different regression lines, then for IOO(I_) percent of the dif-

ferent regression lines the statements will be correct.

Simultaneous tolerance intervals have a different interpretation

than that given for prediction intervals. Lieberman[l] treated the

problem of determining the Joint prediction intervals for the future

i
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values of Y at each of K(known) separate settings of the independent

variable x, when all K predictions are based upon the original fitted

regression line. A probability statement concerning this Joint pre-

diction interval containing the K future values of Y was given.

An experimenter is sometimes interested in Joint pre_.ictioninter-

vals, and sometimes interested in simultaneous tolerance intervals.

When the number K or prediction intervals is large, the resultant

intervalsmay be useless. In other cases, the number K may be un-

known so that the prediction intervals may not be applicable. For these

cases, as well as those situations when the experimenter actually wants

a tolerance interval instead of a prediction interval, simultaneous

tolerance intervals may be useful.

Both prediction intervals and simultaneous tolerance intervals,
e

pertain to statements concerning future values of Y's for given x's.

The reverse problem of making statements about the x's from which the

observed future Y's were obtained is often referred to as the problem

of discrimination. The discrimination problem is described as follows:

The statisticianhas n pairs of values (Xl, YI)(x2, Y2),...,(Xn, Yn)

from which he estimates the regression line (_+ 8x. He now observes

K additional observations _i' _2''"_Y_ for which the co_responding

independentvariable values x_, _,...,_ are unknown. The statis-

tician wishes to estimate these values of x and bracket them by means

of simultaneousconfidence intervals. This problem was first treated

by M_nclel[4], and another solution was given in Miller [5].

The analogous situation arises for discri_tion problema that

motivated the construction of simultaneous tolerance intervals instead

of Joint prediction intervals. Again, from the sample data, a regression

2
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line a + bx may be constructed, but the number K of discriminations

to be made from it may be unknown. Even when K is known, it may be

so large that the resultant intervals may be too wide. This problem will

be referred to as finding unlimited simultaneous discrimination inter-

vals in regression. *

Unlimited simultaneous discrimination intervals [D_I_,_),Dye(P)]

are sought which are based upon the same estimated linear regression

and which have the property that a_ least lOOP percent of the discrimi-

nation intervals will contain the true x's with confidence I_. Thus

if for a single regression line one asserts that at least lOOP percent

of the discrimination intervals will contain the correct x's, andJ_

similar statements are made repeatedly for different regression lines,

then for IOO(I_) percent of the different regression lines the state-

ments will be correct. For the other fraction (i00_ percent) the Per-

centage of discrimination intervals enclosing their true x's may be

greater or less than lOOp Percent for each line.

The use of unlimited simultaneous discrimination intervals is par-

ticularly important in bioassay where a standard curve is constructed on

which all future assays (discriminations) are to be run. This is simi-

lar to the problem of calibrating a measuring instrument where the esti-

mated calibration line is used to correct future readings taken with the

instrument. The calibration problem frequently arises in the physical

sciences and engineering.

An example of a bioassay to which unlimited simultaneous discrimi-

nation techniques could be applied is an assay for immunoglobulins in

human sera. Human serum oontains three known antibodies (gamma globulins):

? . r
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7A, 7G, and 7M. These are routinely assayed in a number of labora-

tories by the method of radial immunodiffusion.

A radial immunodiffusionassay is performed as follows. An agar

plate is prepared with a gel surface containing antiserum to the innnuno-

globulin to be assayed. Holes or wells are punched into the agar gel.

Each plate will have a convenient number of symmetrically placed wells

(for example, 6, 12, or 18). A fixed amount of human serum is then

pipetted into a well. The antigen in the serum diffuses out from the

well and reacts (precipitates)with the antibody in the antiserum gel.

A visible precipitate ring is formed about the well. Each well will

_roduce one assay. This is illustrated in Fig. 1 for four assays on a

plate with six holes.

i

O o o

o @ @
Figure 1

The higher the concentration of the imnmnoglobulin in the serum the

larger the precipitate ring will be. Thus the size of the precipitate

ring is a function of the innunoglobulin concentration (and random error).

The size of the ring is customarily measured in one of two rays.

The simplest masure is the average of the horizontal and vertical

diameters (see Fig. i). This is the maoure we will use, and it is

abbreviated by RSD (for ring size diameter). Usually this is quite
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satisfactory because only in rare instances will be precipitate rings

look noncircular. An alternative method of measuring the ring size is

to magnify and silhouette the ring on a piece of paper by means of a

light, cut out the silhouetted ring on the paper, and weigh the paper.

This method takes much longer and also suffers from inaccuracies.

The standard curve for the bioassay can be constructed from puri-

fied innnunoglobulin whose concentration has been accurately determined

by other means (microkJeldahl analysis and spectrophotomc_y ', far

exuxple). Various dilutions of the purified imenxnoglobulin are assayed

on a_ar plates to find what RSD each dilution gives. From the known

concentrations of the dilutions and the resulting RSD'8 the standard

curve can be fitted.

The standard curve of RSD vs. concentration can have various shapes

dependinK on the iwmnoKlobulin, the time allotted for tee precipitation,

etc. In most cases a reasonable linear fit c_,nbe obtained over a wide

ranks of concentrations (or RSD's) in either the original scale or in

log scales. In the numerical example to be presented later in Section 4

the assay curve for 7O is linear (over a larks ran@e) for RF_ vs. log

concentration. Some investiKators have found the concentratiou to be

linear vs. the area of the precipitate ring (see [3]). From the statis-

tical point of view the analysis is simplest when a scale for RSD or

concentratiou or both can be found for which the relationship is linear

(and nornnlit¥ and hanoseedasticit7 are achieved).

Radlai ismunodlffulon can be applied to other proteins (for exu_le,

serum alb_) besides tmmuno@l.obultns. Mancinl, Carbonara, and Weremns

[_] give a much fuller discuulou of the use of this anay than the brief

diloriptio,_ here.

d
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Currently at Stanford this assay is being used to study the everage
l:

levels and vartability of the three immunoglobulins in normal, healthy

subjects. Once the "norml" levels have been established, this assay

and unlimited simultaneousdiscrimination intervals can be used to pick

out "abnormal" subjects. Unlimited simultaneous discrimination il_tervale

can give the clinician an idea of the accuracy and stability of the

assayed immunoglobulin'levelsin patients.

In this paper two techniques for obtaining unlimited simultaneous

discrimination intervals will be given. Section 2 presents a procedure

which is obtained through the Bonferroni inequality and is briefly dem-

cribed in Miller [5]. Section 3 presents an alternative method based

upon an idea presented in the Liebe_n_n-Killer [2] _per and which uses

critical points tabled in that paper. Both methods )e&_ to uQlimited
P

simultaneous discrimination intervals with the _roperty that at least

100P percent of the discrimJnation intervals will contein the true x's

with confidence at least I_. Section 4 contains a n,_m_ricalexample

of the bicassay described earliar. Section 5 presen_ a discussion and

coeq_rison of the two method_ for finding unlimited _.,_ltaneous dis-

crimination intervals.

Throughout this paper it wlll be assumed that

(I) Yi = (X+ _xi + el, i = l,...,n ,

where the ei are indel_ndent N(O,o2). The palrs (xi,Yi) are the

original observatAons _ the regreulon llne. We rill use the follovlng

2
customary estimtcra of a, B, o :

a Y -m&mm "I_x_
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^ i (xi'(Yi

(2)

s2 _L bxI)2" " (Yi " a - •
n-2 i

The distribution theory of a,b,s 2 is so well-known thai there is no

need to summarize it here.

Future observations on the dependent variable will be .iest_ated

by a superscript *p that is, Y*. Let My* denote the true mean

value associated with. Y*_ and x_ the value of the independent vari-

able connected with _y_ (l.e.s f_.:_= G + _x*). For a future obser-

vation Y_ the customary estimator of the value x* is _* = (Y*-a)/_.

This paper is concerned with constructing upper and 1ower limits for

each x* no matter how ma_ future Y_ are observed.

II. Bonferroni Intervals
inn nl ii

The simple Bonferronl inequality says

(3) PeA N B) _._1 - PCAc} - PCBc) •

Thle inequality is useful in eombinlng two confi_ence statements for if

A il one statement with confidence I-(G/2) and B is another with confldenc_

1_2), then both A_te_ent, _ole_w_th Confidence at least 1_-(0_2)- 1-a.

The idea behind the Bo_erroni interval_ ie to combine (for a given

Y_) the confidence interval on My. with the confidence _ on the

llne _ - _ + _x. If the itandard deviation O were known, then each.

interval

• • mm nl mm m • mmmm m m m | mmmm m m m m m m m m m m • • m
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(4) +  (P)a ,

where N(P) is defined by

(5) p i f+N(P) _y212dy-- -- e

would have probability P of containing the true _/,. For each _ in

the interval (4), the Working-Hotelling confidence band on the line

= a + _x gives a confidence interval for the corresponding x = (_)/_.

The union of all these confidence intervals as _ varies over the in-

terval (4) would give a discrimination interval for x*.

]_It a is not known. However, if it can be bounded above with

known confidence, then this bound can be inserted in (4) to produce

intervals which have probability at least P of containing their true

_y,'S. The Bonferroni inequality is used to combine the confidence in

the bound on a with the confidence on the band about the line _=_+Gx.

This procedure is illustrated in Fig. 2. The interval in the brace

on the y-axis is the confidence' interval for _y,; the interval in the

brace on the x-axis is the discrimination interval. If _y, is con-

tained in the interval Y* + &, and if the Worklng-Hotelling confidence
m

band contains the line _ = (% + _x_ the____nthe point (x*, (_+ _x*) must

lie in the s_aded region and x* must lie in the indicated (discrimi-

nation) interval.

8
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Figure 2

Mathematically the discrimination intervals are constructed as

follows. The Working-Hotelling confidence band on the regression llur,

_ =(X + _x is

for all x. The crltlcal point _2/_n.2- is the upper _/2 percentile)

point of the F dis%ribu%ion with degrees of freedom 2,n-2, Wi_h

probability 1-((_/R) %he band (6, contains the true regression _ine

The unknown standard deviation o can be bounded above b_

(7) a s

i '
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where 5/2 X2
n-2 is the lower (_/2 percentile point of the X2 distri-

bution with n-2 degrees of freedom. With probability i-((_/2) the

inequality (6) holds true.

By the Bonferroni inequality (3), the probability (with respect to

(Xl,Yl),...,(xn,Yn)) that both (6) and (7) hold is at least i<_.

For a future observation Y* the 100P percent confidence interval

on its true mean _y. is Y* + N(P)_. As the number of future obser-

vations tends to infinity the proportion of intervals which correctly

contain their true means converges to P by the law of large numbers.

But the interval Y_ + N(P)a is contained in the interval

(o-),(8) Y*t /2x2 s
\ n-2

(with probability i-((_/2)). Thus, the (limiting) proportion of inter-

vals (8) which correctly contain their true means is at least P (with

probability l-((x12)).

The discrimination interval is obtained by intersecting the inter-

val (8) on the y-axis with the confidence band on _ + _x, and project-

ing the intersection onto the x-axis. This is illustrated in Fig. 2.

Actually, Fig. 2 represents the nice case. The discrimination "interval"

can be the entire real line or the union of two semi-infinite intervals.

These pathological cases will occur when the regression line is too flat

(i.e., when b is too near zero relative to its variability). These

cases are directly analogous to what can happen for a single discrlmi-

nation where this pathology is referred to as the Fieiler-Creasy paradox.

The reader can visualize when then pathological .cases occur by redrawing

i0
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Fig. 2 with a much flatter slope and shifting the _y. interval up and

down. The necessary and slufficient condition for the discrimination

"interval" to be a nice finite interval is

2E12..2
(9) b2 >

(_l"_2 '

Only the nice case will be considered in this paper.

Let [D_y.(P),D'y.(P)] -- [_By.(P), B'y_(P)] be the discrimination

interval (B for P_z_erroni). If the sample regression line has positive

slope, the upper en_point By.(P) is the root of the equation

(lO) "+°_'- , _,n-4"-- l::(=,-_U
N(P) 2n_2 ½



where

a =_(PlE(n-2)l°J%__2]_s.

If the sample regression line has negative slope, then B-y.(P) is

the root of the equation (ii) and B_y.(P) is the root of the equation

(lO).

liT. Augmented F Intervals

The intervals in the preceding section were derived from the Joint

probability statement

(14) " _ (xi=_)2 for all x,

whose validity stemmed from the Bonferronl inequality. In this section

a similar Joint probability statement will be obtained from a different

approach.

In [2] Lieberman and Miller proved that

PCl(a_)+ (b-O)x+ N(P)al

(xi=_2 + forall x, P),

=l'n,

where the critical point c* iedefined by

12

n i nn m mNm I m nmmu • m ,

1966024111-015



I IIIIIlil IIIIIII'I IIII II I I I I IIII III IIIi ..... ii _ i _

I!
(le <-(c*)2 : i - :.

The random variables ZI,Z2 are independent N(O,I), and X2n-2 is a

X2 variable with n-2 degrees of freedom which is independent of Z1

and _. For want of a name the statistic

(17)
x_.2/(n-2)

will be referred to as the augmented F statistic. Tables of c* for

= .St .3, .i_ .05, .01, .O01j n-2 = i(i) 30(5) 50(10)i00 are given

in[21.

By taking N(P) = 0 for the first inequality, and letting N(P) -,

+ _ for the second inequality_ the expression (15) implies that

PCl(a_) + (b-_)_l <c* s If+ _x'x_221 _ for all x ,(18) - _i (xi'_ "

an__d o --<C* s} >_ i - _ .

The probability in (18) is actually greater than i-_ because not all

combinations of x and N(P) are utilized inside the probability sign.

Thus, the confidence _nd

if

(19) _ _+_x ¢ a + l_x+ e* 8 + for all x , -:,_,.

and the _ound ;_'

hold e with illt¥ at least l_. ;_>-..

i leU I_l n i | i i • i!nii i i i i in nine _ i
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The construction of the discrimination intervals now proceeds

exactly as in the preceding section with (19) replacing (6) and (20) re-

placing (7). The discrimination "intervals" will all be nice finite

intervals if and only if

(21) b2 > (c*)2s2 .

Only the nice case will be considered in this paper.

Let [D_y.(P),Dy.(P)] = [C_y.(P),_y.(P)] be the discrimination in-

terval (C for the method based upon c*). If the sample regression

line has positive slope, the upper endpoint _y.(P) is the root of the

equation

: Y*+ _(P)c*s ,
f

and :C_y.(P) is _he root of the equation

= Y*- _(P) c* s .

i m • | m m m m
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where

E. (c.2 s2)/_xl-B 2

D = N(P) c.2 s •

If the sample regression line has negative slope, then _y.(P) is

the root of the equation (23) and C_y,(P) is the root of the equation

IV. Numerical Exan_le

A blassay of the gamma globulin 7G was performed at the Stanford

University Medical Center using the method of radial immunodiffusion

described in section I. The ring size diameter (RSD) was measured on

two wells for each of seven known concentrations of 7G. The resulting

data are given in Table I.

Table i

_C_.s.D.)_/z(_ _ 7o) x(l_loz)
I II I

,68 1383.6 3.l_lO

62 ,6e 696.8 2.8431

62.5,62.5 716.9 2.8555

52.5,52.5 328.3 2.5163

56 ,56 335.o 2.[eSo

_B ,_9 l_?._ 2.1685

- 2.5997;._-57.21_);a. _.8790;_ - 20.l_;

-_Baeh of the fourteen mea|twements of the ¥'s Is the average of tb_ -"

.,

| •
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The usual test of linearity shows that a simple linear regression

of RSD on log concentration fits the data quite well. The graph of

Fi£. 3 presents the above data and the associated estimated regression

line y = a + bx.

At each of three hypothetical future values of Y*, 57.20, 70, and

80, unlimited simultaneous discrimination intervals for the associated

x* values have been computed at _-- .01, .05 and P = .30, .80 using

the Bonferroni and augmented F methods (equations (12), (13) and (24),

(25)). The results of these computations are presented in Table 2.

Table 2

I , ,

.O1 .30 57.20 2.582,2.617 .035 2.566,2.633 .067

70 3.203,3.269 .066 3.188,3.285 .097

80 3.682,3.786 .104 3.667,3.801 .134

.80 57.20 2.575,2.624 .049 2.520,2.679 •159

70 3.196,3.277 .081 3.144,3.333 .189

80 3.675,3.794 .119 3.62%3.849 .226

•o5 57.2o2. 5,2.6 4 2 5#4,2. 5 .o51
70 3.209,3.262 .053 3.199,3.273 .074

80 3.69@,3.774 .082 3.682,3.785 .103
ii, ilw, , -, i, i

.80 57.20 2. 577,2.622 .045 2.538,2.660 .122

7o 3.210,3.271 .069 _.164,3.310 .146

80 3.684,3.783 .099 3.61_,_.821 .173

The Y* value 57.20 is equal to a+bx. Therefore, for fixed a

and P) t_e intervals for _he corre_Ixmdlnt_ x* have lengtl_n ahorter

than intervals corresponding to any other value of Y*.

Because of the symmetry of this problem about the point Y* = a+b_

an interval for x* correspo_ding to ¥* -_._0 would h!ve the uAm

16
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length as the interval for x* corresponding to y* = 70. The eame

relationship exists for intervals on x*'s corresponding to Y* values

of 3_._O and 80. It is implicit here that a Y_ value as large as 80

(or as small as 34._0) is within the _nge of linearity.

This example indicates that both methods can he of practical im-

portance. The lengths of the intervals are short enough to be useful

for picking out subjects who have "abnormal" concentrations of 7G (see

section I). It is also evident that for this example the Bonferonni

intervals are shorter than the intervals oh+mined using the augmented

F procedure.

V. Comparisons and Discussion

The equations for the Bonferroni intervals (Sec.2)_and the au_nented F

intervals (Section 3) are not related in a way that enables one to com-

pletely define conditions under which one method always produces shorter

intervals than the others. Of course, th_ interval lengths can always

be compared for given data. In addition, the interval lengths for

the two methods are amenable to comparison when the Y* values are close

to the number a+_ or when the Y* values are far from a+h_. These

two situations are discussed below.

The coeqxLrison for the former situation is stated in terms of the

s_a_is_tc "2 = f_ say. Distribution theory for f is well-
s

know_ in fact_ f has an F distribution with 1 and n-2 degrees of

freedom under the b_othesis that _ = 0 and a non-cen_,al F-dlstribu-

tion _ _ _ 0. Hence_ it can be said thet if f 1_ _ui_ 1£rge_

..._, I_ _iS h_Y sttnift_tl_ dif:erent from zero, and co.tersely.

1966024111-020



.!
................ --w_ III I II III II

Notice that f is
_reater than 2F_2'.n.2 and f is greater than

c_2 if and only if all Bonferroni and augmented F intervals are of

finite length (see equations 9 and 21). To avoid infinite-length inter-

vals, let f> 2F_2/,2n.2 and f> c.2 for the discussion below.

Suppose Y_ is so close to a+b_ that Y_-(a+bx-_ makes a negli-

gible contribution to the computations of By_(P) and Cy_(P). Then,

_y_(P) - Cy_(P) < By_(P) - _BI_(P) if and only if

h(_):f-2_2.2

N(P) fn(n'2)f" _+ [n_2(P,(n'2,22F_2n'2 (22F_s2n2)2+2f_2 2n.2]_ }

.... ) i "N(P) e*(nf)_'+ [n_(P) C*_ c.4 + c_?f] _ " g(f)"

By comparing tabled values of e* and 22n.2, one finds that

2._/2
e*2 < 2,n-2 at _ = .001,.01,.05,.i0, and .30, and n = 3,7,12,32,

62, and i02. It is reasonable to s_te without formal proof that at

leastfor 3 <_n <_lOZ and .001<__ < .30,c.2 < 2_2_. Since

g(_) _d _.(P) - _.(P) <__.(P) - __(P), when2_/_2_ <_ <__,--X" _sn-_ -- -- U

where fO is the point at which the curves h(f) and g(f) first

cross above 22_,2n.2_ _re explicitly, where fO is the ia_imum of f

greater than 2F_2.2
_lues

n_ ,uchthet g(_)< h(f).

Some representative values of fO for various levels of _, P,

and n are given in Table _. Then value_ were found using an iterative

procedure.

After computing fO for the _elire_ _m_ P levels, _e can

P(_,_n-2 < f < fO) for several value_ of f_._"A'_i_
find

_8

m mm mmm mmm_m m m m m mm mlmm mm_u m m I m n
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can be used by the statistician who must recommend an unlimited simul-

taneous discrimination interval method to his client before the data

are observed. For example, if the probabilities are large, the statis-

tician can recommend the use of the augmented F method knowing that it

will produce shorter intervals than the Bonferroni method for Y* values

near a+bx most of the time.

Table 3

n_ G_ P- 2F2_2n-2 c*-_2 fo

7 .i0 .50,.80, .90 11.6 10.3 14.2

7 .3o .5o,.8o,.9o 5°7 4.8 8.4

15 .001 .50,.80,.90 29.0 27.6 30.1

15 .lO .50,.80,.90 7.6 7.0 8.4

15 .30 .50,°80,.90 4.4 3.9 5.4

102 .001 •50, .80,.90 16.4 16.0 16.6

102 .i0 •50, .80,.90 6.2 5.7 6.5

Although 22F_. 2 <f < fo implies that _y.(P)-C_y.(P)< By_(P)-By.(P),

it is not necessarily true that f > f0 implies that _y.(P)-C_y.(P)

By.(P)-_By.(P). This is because the curves h(f) and g(f) may cross

more than once. It can be shown that if f is very large and N(P)_

is large enough then h(f) > g(f) and _.(P)-B__(P) < _ym(P)-C_y.(P).

A "large enough" value for N(P)_/_ is not a very restrictive condition;

e.g., N(P) must be greater than .08 if _ = .i0, n = 102, N(P) must

be greater _han 1.06 if _ = .001, n = 12. Thus it is generally true

if b is highly significantly different from zero and if Y* is not

far from a+bx, then the Bonferroai metho_wi!l produce shorter inter-

vals than the augmented F method.

20
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For the example of section 4, f = I0,068 indicating that b is

highly significantly different from zero. It is not surprising, there-

fore, that every Bonferroni interval in Table 1 is shorter than the cor-

responding augmented F interval.

Now consider the situation where the Y* values are such that

2 2F0_,2n 2 [ n.2]½S,oj2x2
IY* -(a+bx-_l is so large that sn-_f-2 _2), sn-_f-c*2), N(P)

n-2

N(P) c*s are negligible in comparison. Then By.(P)-By.(P) is approxi-

mately equal to

and _.{P)-C._{P) is appr_i_tely eq_l to
A _A

2b_ I_ - (a+b_I •
V_

2_F_/2 _
As indicated earlier, 2,n-2 > for 3 < n < 102 and .001 < (_< .30.

Consequently, for Y* values far from a+b_, it is generally true that

the augmented F method provides shorter intervals than does the Bon-

ferroni method.

For the imnnAnodiffusion data discussed in Section 4,

1,
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if and only if IY*-(a+b_)l > 686. Since Y* cannot be negative, the

augmented F intervals will be shorter than the Bonferroni intervals if

and only if the Y* values are greater than 744.

Obviously, an RSD value of 744 or larger will never be observed and

one concludes that, if P = .80 and _ = .05, the Bonferroni method is

definitely better than the augmented F method for estimating unlimited

simultaneous discrimination intervals based on the in_unodiffusion data°

Extremely large values of Y* are not always necessary for one to

be certain that _y.(P)-C_y.(P) is less than By.(P)-By.(P). If f is

small, n is small, G is large, and P is small then _y.(P)-C_y.(P)

may be less than By.(P)-B_y.(P) for all Y* values greater than a

point which is not far from a+bx. For any of the usual choices of

and P levels and normal regression data (n and f not small), however,

it appears that Y* would have to be very far from a+b_ before one

could be certain that C-y.(P)-C_y.(P)< By.(P)-B_y.(P).

It should be mentioned that the augmented F method can be expected

to produce short intervals when n is small. In fact, in the limiting

case of n = 3, the augmented F procedure yields shorter intervals

than the Bonferroni method for any choices of _, P, Y*, and any data

(subject to f > d*2). This is because at n = 3, c'2< n-2 and

J_

<2_'_2,n.2 for every 5 •

The above comparisons of the lengths of ir+ervals provided by the

Bonferroni and augmented F procedures do not yield explicit results.

Nevertheless, one has the ingression that "n most problems where these

methods can be useful, the method based on the Bonferroni inequality

will yield shorter unlimited simultaneous discrimination intervals--

especially when the future Y* values are not expected to be far from a+b_.

22
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